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Hierarchical model of slow constrained dynamics
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We introduce a simple hierarchically constrained model of slow relaxation. The configurational energy has
a simple form as there is no coupling among the spins defining the system; the associated stationary distribu-
tion is an equilibrium, Gibbsian one. However, due to the presence of hierarchical constraints in the dynamics
the system is found to relax to its equilibrium distribution in an extremely slow fashion when suddenly cooled
from an initial temperatureT0 to a final oneTf . The relaxation curve in that case can be fit by a stretched-
exponential curve. On the other hand, the relaxation function is found to be exponential whenTf.T0, with
characteristic times depending on bothTf and T0, with characteristic times obeying an Arrhenius law. Nu-
merical results as well as some analytical studies are presented. In particular, we introduce a simple equation
that captures the essence of the slow relaxation.@S1063-651X~98!00504-2#

PACS number~s!: 64.70.Pf
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I. INTRODUCTION

It has been recognized that glasses show many intere
universal properties which have not been satisfactorily
plained yet@1,2#. It is well known that glassy states are n
ergodic@3#; for example, the diffusive motion of molecule
in a liquid near the glass transition temperature becom
much slower than the experimental time scale, and the s
of the system is not able to explore the whole phase sp
within the observation time scale. The relaxation functi
q(t) that describes the decay of the system energy~or, analo-
gously, of any other relevant magnitude! towards its station-
ary state is observed to evolve in an extremely slow fash
in the vicinity of the glass transition, and is empirical
found to be well fit by the Kohlrausch-Williams-Watts o
stretched-exponential law, i.e.,

q~ t !5Aexp@2b~ t/t!b#, ~1!

with exponent 0,b,1 @4#. It is often observed that the
exponentb decreases with decreasing temperature@5#.

Near the glassy transition standard methods of statis
mechanics based on equilibrium distributions are no lon
suitable to describe this kind of system. Adynamical ap-
proach is required for an adequate understanding of sl
relaxation processes.

To date, several dynamical models have been propose
get some insight into the nature of the slow relaxation p
cesses in glassy dynamics. All of them have in common
presence of some kind of dynamical frustration, and can
classified in two groups: those involving frustration due
the presence of energy and/or entropy barriers~for example,
spin-glass type of models@6–8#!, and others in which even
with a simple free energy landscape the frustration is dire
introduced in the dynamics@9,10#. The model we present in
this paper belongs to the second type, i.e., the energy f
tion is very simple, but the dynamics is strongly constrain
only a reduced number of degrees of freedom can evo
freely at a given time step, while the rest remain frozen.
571063-651X/98/57~4!/4354~7!/$15.00
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The new ingredient we include with respect to previou
studied models is the presence of ahierarchyof constraints
@11#. With that hierarchy we pretend to mimic the fact that
slow relaxation processes, usually there are some degre
freedom that evolve faster than others and that influence
dynamics of the slower modes in such a way that a wh
hierarchy of constraints is generated.

The idea that a theoretical model of slow relaxati
should be a dynamical and hierarchically constrained on
not new. It was introduced by Palmeret al. @12#. They de-
fined a family of models consisting of discrete levels of d
grees of freedom,n50,1,2, . . . , each level containingNn
spins. A spin at leveln11 can freely change its state on
whenmn<Nn spins in leveln happen to be at a given spe
cific configuration among all the 2mn possible ones. As a
consequence of such dynamical constraints, they argued
a stretched-exponential behavior, Eq.~1!, can be reproduced
under broad conditions@12#. One important point, however
is that in the previous paper’s analysis it is implicitly a
sumed that all the spins above a given one in the chain
fluence the dynamics of it, and therefore the constraints
long ranged.

In this paper we consider a very simple microscopic hi
archically constrained model for slow relaxation, which is
particular physical realization of the general scenario int
duced in@12#, with two important differences.

~1! Our model does not consider long range dynami
constraints, i.e., a degree of freedom is constrained dire
only by the nearest degrees of freedom in the hierarchy.
we will show this is enough to generate a slow relaxation

~2! The main advantage of this model is that the dynam
and the constraints are specifically defined, rendering
model suitable to be analyzed using computer simulati
and detailed mathematical analysis.

The paper is structured as follows. In Sec. II we introdu
the model, in Sec. III we present our main numerical resu
as well as a simple theoretical approximation that reprodu
stretched-exponential type of relaxation; we also discuss
nature of the boundary conditions. Finally we present
4354 © 1998 The American Physical Society
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conclusions. A mathematical formulation of the model an
mean-field-like solution are presented in an Appendix.

II. THE MODEL

The model consists of a set of degrees of freedom~or
spins!, evolving according to a constrained dynamics. T
degrees of freedom could, in principle, be arranged in diff
ent ways, but in what follows we consider only a on
dimensional chain with a degree at every site. Each degre
freedom is exposed to the action of an external potential,
functional form of which is schematically shown in Fig. 1.
has two local minima at positionss50 ands51 with values
0 ande, respectively, and a maximum of heightf.e sepa-
rating the two minima. We assume that each degree of f
dom can be located only at the minima of the potential, a
its state can therefore be characterized by a spinlike varia
s50,1.

The spins can change stochastically their state with
following ~Arrhenius! transition ratesG:

G0→15t0
21expS 2

f

Tf
D , G1→05t0

21expS 2
f2e

Tf
D ,

~2!

wheret0 is a constant that defines a microscopic time sc
and Tf denotes the temperature. Assuming that there is
static interaction among spins, we can easily calculate
equilibrium probabilitypeq to find a spin at states51 by
using the detailed balance condition:

peq5
G0→1

G0→11G1→0
5

1

exp~e/Tf !11
, ~3!

which gives the Gibbs equilibrium distribution associated
the potential in Fig. 1~observe that it does not depend onf).
In the absence of interaction among spins the system exh
exponential~Debye! relaxation towards the equilibrium dis
tribution with characteristic relaxation time given byt
5peqt0exp(f/Tf).

FIG. 1. A schematic figure of the potential form in which atom
are placed in our model. Two local minimas50 and 1 are sepa
rated by a maximum of heightf.
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We now introduce a dynamical constraint in the model:
Fig. 2~a! we show schematically the way in which a spinS1
constrains the motion of its right neighborS2 @13#. When the
spin S1 is at the states150, the dynamics of spinS2 is
obstructed, i.e.,f→`, and jumps ofS2 between the two
states are completely prohibited~see Fig. 3!. In the case in
which both spinsS1 andS2 are initially at states50, for S2
to jump to the states251, S1 has to evolve first tos151 to
clear the path ofS2. Generalizing this rule the motion of th
( i 11)th spin in the chain is blocked by thei th spin when
this one is at statesi50. Note that while the motion ofsi is
affected bysi 21 it does not depend onsi 11, originating in
this way a hierarchy ofdirectedconstraints. It is important to
observe that the dynamics is asymmetric, and that e
though there is no static interaction among spins they
dynamically constrained; therefore the equilibrium distribu
tion is the product of the single-site equilibrium distributio
Eq. ~3!. This is rigorously proved in the Appendix where
probabilistic formulation of the model is presented.

Due to this series of constraints we expect the system
show slow relaxation. One way to see that is in terms of

FIG. 2. When the spin 1 is placed at positions150 the transi-
tion of the spin 2 is prohibited.

FIG. 3. The phase space for the two-spin system. The direct
from $s1 ,s2%5$0,0% to $0,1% is obstructed and the transition be
tween these two states is prohibited.
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topology of the phase space: as discussed before, in the
spin case the system cannot go directly from$s1 ,s2%
5$0,0% to $s1 ,s2%5$0,1%, but has to take a roundabout pa
$0,0%→$1,0%→$1,1%→$0,1%. In the case of anL-spin system
the phase space forms anL-dimensional hypercube with
sides of size 1. A vertex of the cube represents a sys
state. Though the maximum geometrical distance betw
any two states isL1/2 measured by the edge length of th
hypercube, a big fraction of the possible paths is obstruc
and unavailable. Therefore the system has to pass thro
more complex roundabout paths as the system sizeL in-
creases, and we expect those complex trajectories to give
to slow relaxation.

III. RESULTS

We have performed numerical simulations of the mo
for different system sizesL up toL51000, with open bound-
ary conditions@14#, i.e., the first spin in the chain~hierarchy!
evolves in an unconstrained way~this mimics the fact that
typically in glasses there are fast, unconstrained, degree
freedom!. Most of the plots we present are obtained forL
5250, but the results have been observed to be very ro
when increasing system size. Simulations have been ca
out for both simultaneous and sequential types of update,
essentially no physical difference is observed among th
Some parameter values are kept fixed in all the simulatio
t0510.0, f51.0, ande50.5. We have verified that th
qualitative general features exhibited by the model do
depend on the choice of these values. As initial condition
spins are placed at positionss50 or 1 with probabilities
corresponding to an equilibrium distribution,peq(T0), Eq.
~3!, for a given initial temperatureT0. Therefore the dynam
ics drives the system from an equilibrium distribution atT0
to a different equilibrium distribution atTf .

We introduce the mean energy per spin defined as

U~ t ![L21e(
i 51

L

si~ t ! ~4!

~only spins in thes51 state give a nonvanishing contribu
tion to the energy!. Given that there is no configurationa
interaction among spins, after sufficiently long times,U(t)
approaches its equilibrium valueUeq5peqe. We define a re-
laxation functionq(t) as

q~ t ![uU~ t !2Uequ, ~5!

where, after a sufficiently long timet, q(t) approaches zero

A. General features of the relaxation curves

Two typical relaxation curves are shown in Fig. 4; th
correspond to a case in which the system is cooled do
Tf,T0 ~upper one!, and in the other the system is heated u
i.e., Tf.T0. Their behaviors are essentially different.

The uppermost corresponds to 1/T052.19, 1/Tf53, and
L5250. Note that the relaxation is very slow; as the time
measured in units oft0510, the maximum time correspond
to 15 000 time Monte Carlo steps~the curve is the average o
106 independent runs!. Observe that asymptotically, i.e., a
ter a transient of abouttc'800t0 time steps the curve is
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locally well fit by an exponential with a very large chara
teristic timet;2100t0, that implies an extremely slow re
laxation. However, it is not clear from numerics whether f
larger times this exponential behavior will persist, or t
curve will decay in an even slower fashion. On the oth
hand, the whole curve, including the initially faster dec
can be perfectly fit by a stretched exponential withb50.38
~in fact the fit is indistinguishable from the numerical data
Fig. 4!.

Increasing further the time in the computer simulation
decide whether the real asymptotic behavior is an expon
tial or a stretched exponential is beyond our available co
putational power. In any case, for situations in which t
system is cooled down, we always get curves that bend
gressively in a semilogarithmic plot; and even though
final part can always be fit with a straight line~exponential
behavior! in no case is it evident whether that exponential
gives the right asymptotic behavior. Even for extremely lo
times we have this type of ambiguity. However, as for a
‘‘reasonable’’ time a stretched exponential can always be
we admit the relaxation to be nonexponential is this case
any rate, the relaxation is extremely slow in the cooling ca

The lower curve in Fig. 4 corresponds to the same ini
temperature, 1/T052.19, and system size, than the upp
one, but a larger final temperature: 1/Tf51. In this case the
transient is much smaller,tc'60, and after it, a pretty clea
exponential behavior settles in.

The situation described for the two previous examples
general for all the relaxation curves: those in whichTf,T0
are well fit by a stretched exponential, while for the oppos
situation,Tf.T0, the decay is exponential after a transien

We now analyze the transition between the two previo
regimes in a more quantitative way. In Fig. 5 we show t
transient time~i.e., the time after which an exponential fit
adequate! as a function of the final temperature for a fixe
initial temperature 1/T052.19.

Note that for very largeTf ~small 1/Tf) the system can
relax very fast, there is no effective frustration, andtc is

FIG. 4. Typical relaxation curves forTf,T0 ~uppermost, 1/Tf

53 and 1/T052.19), andTf.T0 ~lowermost 1/Tf51 and 1/T0

52.19). The second one is exponential while the first one can b
by a stretched exponential withb50.38; an exponential fit~dashed
line! is valid for times larger than'800.L5250.
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57 4357HIERARCHICAL MODEL OF SLOW CONSTRAINED DYNAMICS
small. In fact, for 1/Tf→0 the system has a huge degree
thermal activation, and decays exponentially fast to the e
librium state with no transient. AtTf5T0 the system is al-
ready at equilibrium thereforetc50. Between these two lim
iting casestc is larger than 0 and behaves in the form sho
in Fig. 5; observe that in this intervaltc is always relatively
small, therefore the asymptotic exponential settles in a s
time ~smaller than the observation time!. On the other hand
when Tf,T0 (1/Tf.1/T0), the behavior is quite differen
and tc grows fast without bound. We point out that the pr
vious set of values oftc for Tf,T0 are obtained fixing some
maximum time (t51500). If that time is diminished the ap
parent tc decreases, while it seems to increase for lon
times. In this way the values plotted in Fig. 5 are low
bounds for the transient times. In fact, as discussed abov
tc converged to a fixed value fort→`, that would imply an
exponential asymptotic decay, while a continuously grow
tc would imply a stretched exponential type of asympto
decay. Deciding which of those two possibilities is the rig
one from numerics is a very difficult task given the extrem
slowness of the relaxation process.

Let us now ignore the transients and present a descrip
of the system behavior in terms of its asymptotic decay
the Tf.T0 case.

For a given pair of fixed initial and final temperatures, t
relaxation function is well fit~after the transient! by an ex-
ponential~as discussed previously! with a characteristic time
t that depends on both the initial and the final temperatu.

In Figs. 6 and 7 we present the results of our simulatio
for a chain of lengthL5250 ~the results do not change sig
nificantly with increasing system size!.

In Fig. 6 the dependence of the characteristic time on
final temperature is shown. The curve is well fit by
Arrhenius law: t5C1exp(2C2 /Tf) where C1 and C2 are
constants.

In Fig 7 we keep fixed the final temperature, 1/Tf52, to
study the dependence of the characteristic time on the in
state, we also observe that an Arrhenius lawt5D1exp
(2D2 /T0), with D1 and D2 constants, holds. Therefore th
characteristic time depends on both the final temperature
the initial state.

FIG. 5. Transient time~as defined in the text! as a function of
1/Tf , with 1/T052.19.L5250.
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We want to point out that in the two previous graphs,
we crossed to the other regime~i.e., Tf,T0), plotting the
characteristic time associated to a long time simulation~for
example, the one used in Fig. 5! we would obtain a discon-
tinuous jump: the characteristic time for a slight system co
ing (Tf5T02a, with a small and positive! is much larger
~if any! than the one for a slight heating up (Tf5T01a).

Physically the main difference among the cooling and
heating processes is the following: as can be easily der
from the equilibrium distribution, the average length^ l &0 of
chains of spins in the blocking positions50 is ^ l &051
1exp(e/T). Observe that it goes to 2 at infinite temperatu
and diverges for vanishing temperature. Analogously
mean length ofs51 chains iŝ l &1511exp(2e/T). In order
to cool the system down the typical length of a chain
blocking states has to be enlarged. But, of course, the
namics is restricted to sites preceded by islands ofs51
states. As the number and typical length of these islands w
s51 is decreased in the cooling process the dynamics
comes slower and slower. On the other hand, when the

FIG. 6. Semilog plot of the inverse of the characteristic time
a function of 1/Tf for a fixed 1/T052.19.L5250.

FIG. 7. Semilog plot of the inverse of the characteristic time
a function of 1/T0 for a fixed 1/Tf52. L5250.
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4358 57MUÑOZ, GABRIELLI, INAOKA, AND PIETRONERO
tem is heated up, there is no such effect: the dynamic
accelerated as more and more active sites appear in the
tem configuration. In order to render more explicit the p
vious argument let us perform a mean-field type of calcu
tion: as we have seen, the total energy of the system
proportional~throughe) to the number of spinsN1(t) in the
state 1. ForN1(t) we can write a mean-field master equ
tion:

N1~ t11!5N1~ t !1@L2N1~ t !#h1~ t !2N1~ t !h2~ t !, ~6!

whereL is the system size,L2N1(t) is the number of spins
in the state 0 at timet, h1(t) is the probability that at timet
a spin in the state 0 flips to 1, andh2(t) is the probability of
flipping from 1 to 0. If we now divide Eq.~6! for L, we
obtain

s~ t11!5s~ t !1@12s~ t !#h1~ t !2s~ t !h2~ t !, ~7!

wheres(t) is the averaged density of spins at thes51 state
at time t. In this way, Eq.~7! is nothing but an effective
balance equation, which establishes that the probability
being in s51 at time t11 is given by the probability of
being ats51 at time t, plus the probability of being ats
50 times the probability of jumping froms50 to s51,
minus the probability to escape froms51.

We could considerh1 and h2 as given by some fixed
values, but in order to keep better track of the original co
strained nature of the dynamics we choose them in a slig
different way: ass(t) can be interpreted as the probabili
that a fixed spin is in the states51 at time t, we takeh1
50 with probability 12s(t), that is, the transition probabil
ity is 0 if the preceding spin is in a blocking state, andh1
5exp(21/Tf) ~we have takenf5t051) with complemen-
tary probability s(t), according to Eq.~2!. Analogously,
h250 with probability 12s(t), h25exp@(e21)/Tf# with
probability s(t).

In this way, as the system relaxes to its stationary st
the transition probabilities change and modify the rate
which the dynamical variables(t) evolves.

The previous simple~but not trivial! equation cannot be
solved analytically, but it is simple to iterate numerical
We have considereds(t50) given by its equilibrium value
at some temperatureT0, and iterate the equation for differen
values of the temperatureTf . The result of such an analys
are shown in Fig. 8. For any set of parameter values
resulting relaxation curve can be fit by a stretched expon
tial with exponentb,1. We will further study the curious
analytical properties of this simple approach in a futu
work.

Therefore, even in this simple approach, in which the s
tial structure is almost completely disregarded, we reprod
a stretched-exponential type of decay, due to the fact tha
jumping probability decays in time as the number of bloc
ing states grows.

B. Open versus periodic boundary conditions

A possible way to synthesize a stretched exponential is
the convolution of a number of exponential curves with d
ferent characteristic times,tn , i.e.,
is
ys-
-
-
is

of

-
ly

e,
t

e
n-

-
e

he
-

y

q~ t !5(
n

wnexp~2t/tn!, ~8!

wherewn are some weight factor.
In order to shed some light on the microscopic origin

that slow relaxation process, and clarify whether t
stretched-exponential behavior describing the transient
havior of the relaxation function comes from a convoluti
like that of Eq.~8! ~with the n in the sum being the position
in the chain!, we have studied the time relaxation of th
energy of the spin at every site as a function of its position
the chain. In Fig. 9 we show the time evolution ofU( i ,t)
2Ueq, with U( i ,t)5e^si(t)&, where^ & stands for average
over different runs. It is observed that the first spin in t
chain relaxes faster than the second one, the second
faster than the third, and so on. In fact, the energies of
first spinsU( i ,t) relax exponentially fast to its equilibrium
value,Ueq5peqe, with a time constantt i that increases with
the positioni in the chain. After a certain number of spin

FIG. 8. Stretched-exponential decay associated to Eq.~7!, when
the system relaxes with 1/Tf53 from an initial s(0)51/@1
1exp(1/2)#. The fit is given byb53.7535 andb50.201@see Eq.
~1!#.

FIG. 9. Semilog plot of the decay ofU( i ,t)2Ueq for the first
seven spins in an open chain as a function of time, for a system
L5250. The lowermost curve corresponds to the first spin in
chain, the next one to the second one, and so on.
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that depends on the parameter values, the relaxation of e
single spin is indistinguishable from the relaxation observ
performing a simulation with periodic boundary conditio
and the same parameter values: this is what we call thebulk
behavior. Therefore the only difference between periodic a
open boundary conditions is a small effect that does not
fect the bulk properties. As apparent stretched-exponen
behavior is observed for the relaxation of the bulk sp
whenTf,T0, we conclude that it is not due to a convolutio
of exponential functions with different characteristic tim
associated to the different positions in the chain.

An alternative possible way to understand the appa
stretched-exponential behavior as associated to a convolu
of exponentials with different characteristic times is by a
suming that the islands of spins in positions51 in the sys-
tem relax in a different way depending on how many bloc
ing spins are placed in the immediately superior positions
the chain. In this way it is clear that spins blocked by on
one spin will relax much faster than spins preceded by lo
chains of blocking spins. This mechanism would give rise
different relaxation times for spins in different relative po
tions in the chain, and therefore to a global stretch
exponential behavior.

IV. CONCLUSIONS

We have presented a simple model of slow relaxation.
stationary equilibrium distribution is a simple Gibbs dist
bution, but its dynamics is strongly constrained. That giv
rise to slow relaxation processes in the case in which
system is cooled from an initial temperatureT0 to a smaller
Tf . The asymptotic behavior of the relaxation function, af
a transient, is found to be exponential when heating the
tem up, with a relaxation time that depends on both the
tial and the final temperatures in a nontrivial way. Wh
cooling the system down it is not clear whether the rel
ation function reaches an exponential behavior asymp
cally or if it is a stretched exponential even asymptotica
In any case, for small enough final temperature, and for la
initial temperatures, the system is found to show an
tremely slow relaxation originated by the constrained d
namical rules. In this way we put forward, using a ve
simple model, how constrained dynamics can slow down
laxation processes in quite a dramatic way. We have a
introduced a very simple one-variable equation that captu
the essence of the slow relaxation and reproduces stretc
exponential type of decay.
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APPENDIX: ANALYTICAL APPROACH

Now we present an analytical attempt to understand
previously described properties. Our model can be form
represented in terms of a Markov chain, defined by the
lowing equation:
ry
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P~$s%;t !5(
$s8%

W~$s8%→$s%!P~$s8%;t21!, ~A1!

where$s%5$si5si(t)%, and $s8%5$si85si(t21)% for every
i 51,2, . . . ,L, are system configurations at timet and t21,
respectively. Equation~A1! states how the probability
P($s%;t) of finding the system at a given timet in a configu-
ration $s% evolves in time. The transition probabilitie
W($s8%→$s%)P($s8%;t21) are given by

W~$s8%→$s%!5)
i 51

L

v~si8→si ;si 218 !, ~A2!

with

v~si8→si ;si 218 !5ds
i8 ,si

2ds
i 218 ,1~21!si81si

exp~besi8!

t0exp~bf!
~A3!

and the boundary conditions0(t)51. This is nothing but the
mathematical expression of the transition probabilities
scribed in the preceding section.

By direct substitution it is easy to verify that the equilib
rium distribution

P~$s%;eq!5)
i 51

L
exp~2besi !

11exp~2be!
~A4!

is the stationary solution of Eq.~A1!.
From the general equation, Eq.~A1!, we can derive a

hierarchy of equations for them-body probability distribu-
tions @similar to the Bogoliubov-Born-Green-Kirkwood
Yvon ~BBGKY! hierarchy in statistical mechanics#. In par-
ticular, for m51

p~si ;t !5 (
si 218 50

1

(
si850

1

v~si8→si ;si 218 !p~si 218 ,si8 ;t21!,

~A5!

where

p~si ;t !5 (
s150

1

••• (
si 2150

1

(
si 1150

1

••• (
sL50

1

P~$s%;t !

~A6!

are the one-body probability functions at timet,

p~si 218 ,si8 ;t21!5 (
s1850

1

••• (
si 228 50

1

(
si 118 50

1

•••

3 (
sL850

1

P~$s8%;t21! ~A7!

are the two-body probability functions at timet21. Analyz-
ing this set of equations is a difficult task as can be seen f
the fact that the one-body probability functions depend
the two-body probabilities distributionsp(si 21 ,si ;t21); the
equations for these depend on three-body probabilities
so on.
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The first analytical approach~the only one we complete in
this paper! consists of approximating the two-body probabi
ties by the product of two one-body probability function
namely,

p~si 218 ,si8 ;t21!'p~si 218 ;t21!p~si8 ;t21!. ~A8!

This is a mean-field-like approximation given that high ord
correlation are neglected. Introducing Eq.~A8! in Eq. ~A5!,
and after some simple algebra, we get

pi~ t !2pi~ t21!5
1

t0exp~bf!
$pi 21~ t21!@12pi~ t21!#

2exp~be!pi 21~ t21!pi~ t21!%, ~A9!

wherepi(t)5p(si51;t). In the case of an open chain we s
p0(t)51, which corresponds to the fact that the first spin
unconstrained at any time.

In the continuous time limit, i.e., whent0@1 ~which is
the case in the numerical simulations!, the previous equation
can be written as

dpi~ t !

dt
5

1

t0exp~bf!
$pi 21~ t !@12pi~ t !#

2exp~be!pi 21~ t !pi~ t !%, ~A10!

the general solution to which is
J.
,

r

t
s

pi~ t !5peq1@pi~0!2peq#exp@ I i~ t !/t1#, ~A11!

with t15t0peqexp(f/Tf) ~which is the free relaxation time!
andI i5*0

t pi 21(t8)dt8 is an effective time fori th spin. Sub-
stituting I 15t in Eq. ~A11!, we can calculateI 2. It is ob-
tained to be given asymptotically byI 2.peqt for t@t/peq,
and therefore Eq.~A11!, for i 52 can be rewritten as

pi~ t !5peq1@pi~0!2peq#exp~2peqt/t1!. ~A12!

By iterating the same procedure we getI i.peqt and Eq.
~A12! as the solution forpi for any i .1. The relaxation time
for i th spint i by Eq. ~A12! is

t i5t1 /peq;expS const3
1

Tf
D , ~A13!

which has a temperature dependence like that of strong
uids. However, this mean-field approximation does not
produce correctly the characteristic decay times. We exp
that more accurate approximations to Eq.~A1! reproduce
more accurately the behavior of the relaxation function. W
plan to present results obtained by truncating the hierarch
higher levels in the future@15#.
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