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We introduce a simple hierarchically constrained model of slow relaxation. The configurational energy has
a simple form as there is no coupling among the spins defining the system; the associated stationary distribu-
tion is an equilibrium, Gibbsian one. However, due to the presence of hierarchical constraints in the dynamics
the system is found to relax to its equilibrium distribution in an extremely slow fashion when suddenly cooled
from an initial temperaturd, to a final oneT;. The relaxation curve in that case can be fit by a stretched-
exponential curve. On the other hand, the relaxation function is found to be exponentiallyih@g, with
characteristic times depending on bdth and T, with characteristic times obeying an Arrhenius law. Nu-
merical results as well as some analytical studies are presented. In particular, we introduce a simple equation
that captures the essence of the slow relaxafi§t063-651X98)00504-3

PACS numbd(s): 64.70.Pf

I. INTRODUCTION The new ingredient we include with respect to previously
studied models is the presence ofiiararchy of constraints
It has been recognized that glasses show many interestirig1]. With that hierarchy we pretend to mimic the fact that in
universal properties which have not been satisfactorily exslow relaxation processes, usually there are some degrees of
plained yet[1,2]. It is well known that glassy states are not freedom that evolve faster than others and that influence the
ergodic[3]; for example, the diffusive motion of molecules dynamics of the slower modes in such a way that a whole
in a liquid near the glass transition temperature becomehierarchy of constraints is generated.
much slower than the experimental time scale, and the state The idea that a theoretical model of slow relaxation
of the system is not able to explore the whole phase spacshould be a dynamical and hierarchically constrained one is
within the observation time scale. The relaxation functionnot new. It was introduced by Palmet al. [12]. They de-
g(t) that describes the decay of the system enéogyanalo- fined a family of models consisting of discrete levels of de-
gously, of any other relevant magnitydewards its station- grees of freedomn=0,1,2 ..., each level containindN,
ary state is observed to evolve in an extremely slow fashiogpins A spin at leveln+1 can freely change its state only
in the vicinity of the glass transition, and is empirically when u,<N, spins in leveln happen to be at a given spe-
found to be well fit by the Kohlrausch-Williams-Watts or cific configuration among all the“? possible ones. As a

stretched-exponential law, i.e., consequence of such dynamical constraints, they argued that
a stretched-exponential behavior, Efj), can be reproduced
q(t)=Aexd —b(t/7)#], (1)  under broad conditiongl2]. One important point, however,

is that in the previous paper's analysis it is implicitly as-
with exponent 6<8<1 [4]. It is often observed that the sumed that all the spins above a given one in the chain in-
exponentB3 decreases with decreasing temperafbie fluence the dynamics of it, and therefore the constraints are

Near the glassy transition standard methods of statisticdbng ranged.
mechanics based on equilibrium distributions are no longer In this paper we consider a very simple microscopic hier-
suitable to describe this kind of system. dynamical ap- archically constrained model for slow relaxation, which is a
proach is required for an adequate understanding of slowparticular physical realization of the general scenario intro-
relaxation processes. duced in[12], with two important differences.

To date, several dynamical models have been proposed to (1) Our model does not consider long range dynamical
get some insight into the nature of the slow relaxation pro-constraints, i.e., a degree of freedom is constrained directly
cesses in glassy dynamics. All of them have in common thenly by the nearest degrees of freedom in the hierarchy. As
presence of some kind of dynamical frustration, and can bwe will show this is enough to generate a slow relaxation.
classified in two groups: those involving frustration due to  (2) The main advantage of this model is that the dynamics
the presence of energy and/or entropy barrifssexample, and the constraints are specifically defined, rendering the
spin-glass type of model$—8]), and others in which even model suitable to be analyzed using computer simulations
with a simple free energy landscape the frustration is directhand detailed mathematical analysis.
introduced in the dynamid®,10]. The model we present in The paper is structured as follows. In Sec. Il we introduce
this paper belongs to the second type, i.e., the energy fun¢he model, in Sec. Il we present our main numerical results
tion is very simple, but the dynamics is strongly constrainedas well as a simple theoretical approximation that reproduces
only a reduced number of degrees of freedom can evolvetretched-exponential type of relaxation; we also discuss the
freely at a given time step, while the rest remain frozen. nature of the boundary conditions. Finally we present the
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FIG. 2. When the spin 1 is placed at positisy=0 the transi-
s=0 s=1 tion of the spin 2 is prohibited.

FIG. 1. A schematic figure of the potential form in which atoms  \we now introduce a dynamical constraint in the model: in
are placed in our model. Two local mining=0 and 1 are sepa- Fig. 2(a) we show schematically the way in which a sgp
rated by a maximum of heigh. constrains the motion of its right neighb8s [13]. When the
spin S; is at the states;=0, the dynamics of spirs, is

bstructed, i.e.¢p—0o0, and jumps ofS, between the two
states are completely prohibitédee Fig. 3. In the case in
which both spinsS; andS, are initially at states=0, for S,
Il. THE MODEL to jump to the stats,=1, S; has to evolve first ts,=1 to

The model consists of a set of degrees of freedom clear the path 06,. Generalizing this rule the motion of the

sping, evolving according to a constrained dynamics. Theli T1)th spin in the chain is blocked by théh spin when
degrees of freedom could, in principle, be arranged in differ{niS one is at stats;=0. Note that while the motion o is
ent ways, but in what follows we consider only a one-2ffected bys;_, it does not depend o, ,, originating in
dimensional chain with a degree at every site. Each degree §fiS way a hierarchy afiirectedconstraints. It is important to

freedom is exposed to the action of an external potential, th@PServe that the dynamics is asymmetric, and that even
functional form of which is schematically shown in Fig. 1. It though there is no static interaction among spins they are

has two local minima at positiorss=0 ands=1 with values dynamically constrainedtherefore the equilibrium distribu-

0 ande, respectively, and a maximum of height> e sepa- tion is the product of the single-site equilibrium distributions
rating the two minima. We assume that each degree of fre=d- (3)- This is rigorously proved in the Appendix where a
dom can be located only at the minima of the potential, andProPabilistic formulation of the model is presented.

its state can therefore be characterized by a spinlike variable, DU 10 this series of constraints we expect the system to

conclusions. A mathematical formulation of the model and
mean-field-like solution are presented in an Appendix.

s=0.1. show slow relaxation. One way to see that is in terms of the
The spins can change stochastically their state with the
following (Arrheniug transition rated: s, =1 8, =1
¢ —€ 32 =O 82 =1
FOHl:TOleXF{_T_f y Flﬂo:’TOileX - Tf ),

)

wherer, is a constant that defines a microscopic time scale,
and T; denotes the temperature. Assuming that there is no
static interaction among spins, we can easily calculate the
equilibrium probability peq to find a spin at state=1 by
using the detailed balance condition:

_ FO—>1 _ 1
peq_l—‘oﬁl“' Flﬂo _eXFKG/Tf)‘}_l’

)

which gives the Gibbs equilibrium distribution associated to
the potential in Fig. 1observe that it does not depend o

In the absence of interaction among spins the system exhibits
exponential(Debye relaxation towards the equilibrium dis- FIG. 3. The phase space for the two-spin system. The direct path
tribution with characteristic relaxation time given by  from {s;,s,}={0,0} to {0,1} is obstructed and the transition be-
= PeqTo€XPAITy). tween these two states is prohibited.
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topology of the phase space: as discussed before, in the twc 10™
spin case the system cannot go directly frdmy,s,}

={0,0} to {s;,s,}={0,1}, but has to take a roundabout path
{0,0—{1,0,—{1,—{0,1}. In the case of ah-spin system

the phase space forms dndimensional hypercube with

sides of size 1. A vertex of the cube represents a systen 10°
state. Though the maximum geometrical distance betweer _
any two states it Y> measured by the edge length of the 2
hypercube, a big fraction of the possible paths is obstructeE
and unavailable. Therefore the system has to pass throug
more complex roundabout paths as the system kize-
creases, and we expect those complex trajectories to give ris
to slow relaxation.

N |

10 Pt

lll. RESULTS 4

. . , 0 500 1000 1500
We have performed numerical simulations of the model t
for different system sizels up toL = 1000, with open bound- ) _
ary conditiong 14], i.e., the first spin in the chaithierarchy _3FLGn-d4-HTY_p;3T9;e'Zﬁ?li‘”"(le;wfgrfni;o l(;pfi”g?:jt-f;f
evolves in an unconstrained wdthis mimics the fact that — 0™ &9 f~ 7o 1 0
; ; ; =2.19). The second one is exponential while the first one can be fit
typically in glasses there are fast, unconstralned_, degrees g‘f . st)retche d exponential wi m;): 0.38; an exponential fidashed
freedon). Most of the plots we present are obtained for Iir):e) is valid for tirFl)wes larger thaméod L:25p0
=250, but the results have been observed to be very robust 9 ' '

when increasing system size. Simulations have been carriqg

out for_both simultar)eous_and sequ_ential types of update, afristic time 7~2100r;, that implies an extremely slow re-
essentially no physical difference 1S ob.served among then]axation. However, it is not clear from numerics whether for
Some parameter values are kept fixed in all the SImUIat'onﬁarger times this exponential behavior will persist, or the

7o=10.0, $=1.0, ande=0.5. We have verified that the oo yill decay in an even slower fashion. On the other
qualitative general features exhibited by the model do noﬁand, the whole curve, including the initially faster decay

depend on the choice of these values. As initial condition th%an be perfectly fit by a stretched exponential witk 0.38
spins are placed at posﬂpr&O or 1. W't.h probabilities (in fact the fit is indistinguishable from the numerical data in
corresponding to an equilibrium distributiope(To), EQ. Fig. 4).

(3), for a given initial temperatur&,. Therefore the dynam- "\ raasing further the time in the computer simulation to

ics drives the system from an equilibrium distributionTat  yecide whether the real asymptotic behavior is an exponen-
to a different equilibrium distribution af; . _ tial or a stretched exponential is beyond our available com-
We introduce the mean energy per spin defined as putational power. In any case, for situations in which the

cally well fit by an exponential with a very large charac-

L system is cooled down, we always get curves that bend pro-
U(t)ELflEZ si(t) (4) gressively in a semilogarithmic plot; and even though the
i=1 final part can always be fit with a straight liiexponential

. ) o ) behavioj in no case is it evident whether that exponential fit
(only spins in thes=1 state give a nonvanishing contribu- giyes the right asymptotic behavior. Even for extremely long
tion to the energy Given that there is no configurational tjmes we have this type of ambiguity. However, as for any

interaction among spins, after sufficiently long timeKt)  “reasonable” time a stretched exponential can always be fit,
approaches its equilibrium vallge,= pee. We define are- e admit the relaxation to be nonexponential is this case. At
laxation functionq(t) as any rate, the relaxation is extremely slow in the cooling case.

The lower curve in Fig. 4 corresponds to the same initial
temperature, Tj,=2.19, and system size, than the upper
one, but a larger final temperatureTi# 1. In this case the
transient is much smallet,~60, and after it, a pretty clear
exponential behavior settles in.

The situation described for the two previous examples is

Two typical relaxation curves are shown in Fig. 4; they general for all the relaxation curves: those in whigh< T,
correspond to a case in which the system is cooled dowrare well fit by a stretched exponential, while for the opposite
T¢<T, (upper ong and in the other the system is heated up,situation,T>T,, the decay is exponential after a transient.
i.e., T{>Ty. Their behaviors are essentially different. We now analyze the transition between the two previous

The uppermost corresponds told#2.19, 1T;=3, and regimes in a more quantitative way. In Fig. 5 we show the
L=250. Note that the relaxation is very slow; as the time istransient time(i.e., the time after which an exponential fit is
measured in units ofy= 10, the maximum time corresponds adequateas a function of the final temperature for a fixed
to 15 000 time Monte Carlo stefthe curve is the average of initial temperature I,=2.19.
1¢° independent runs Observe that asymptotically, i.e., af-  Note that for very largel; (small 17;) the system can
ter a transient of aboui.~800r, time steps the curve is relax very fast, there is no effective frustration, andis

q(t)=[U(t) = Ued, ©)

where, after a sufficiently long timig q(t) approaches zero.

A. General features of the relaxation curves
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FIG. 5. Transient timéas defined in the textas a function of !

UTy, with L/Ty=2.19.L = 250. FIG. 6. Semilog plot of the inverse of the characteristic time as
a function of 17 for a fixed 1T;=2.19.L = 250.

small. In fact, for 1T;—0 the system has a huge degree of

thermal activation, and decays exponentially fast to the equi- We want to point out that in the two previous graphs, if
librium state with no transient. AT;=T, the system is al- we crossed to the other regintee., T{<T,), plotting the
ready at equilibrium thereforg=0. Between these two lim- characteristic time associated to a long time simulatfon

iting cased, is larger than 0 and behaves in the form shownexample, the one used in Fig) &e would obtain a discon-

in Fig. 5; observe that in this interval is always relatively tinuous jump: the characteristic time for a slight system cool-
small, therefore the asymptotic exponential settles in a shoftg (Tt=To— @, with @ small and positiveis much larger
time (smaller than the observation tijmén the other hand, (if any) than the one for a slight heating up{=To+ a).

when T;<T, (1/T{>1/T,), the behavior is quite different Physically the main difference among the cooling and the
andt, grows fast without bound. We point out that the pre-heating processes is the following: as can be easily derived
vious set of values df, for T;<T, are obtained fixing some from the equilibrium distribution, the average length, of
maximum time {=1500). If that time is diminished the ap- chains of spins in the blocking positios=0 is (l)o=1
parentt, decreases, while it seems to increase for longert exp(e/T). Observe that it goes to 2 at infinite temperature
times. In this way the values plotted in Fig. 5 are lowerand diverges for vanishing temperature. Analogously the
bounds for the transient times. In fact, as discussed above, ifean length o6=1 chains is();=1+exp(—€/T). In order

t, converged to a fixed value for—, that would imply an  to cool the system down the typical length of a chain of
exponential asymptotic decay, while a continuously growingblocking states has to be enlarged. But, of course, the dy-
t. would imply a stretched exponential type of asymptotichamics is restricted to sites preceded by islandss=efl
decay. Deciding which of those two possibilities is the rightstates. As the number and typical length of these islands with
one from numerics is a very difficult task given the extremes=1 is decreased in the cooling process the dynamics be-
slowness of the relaxation process. comes slower and slower. On the other hand, when the sys-

Let us now ignore the transients and present a description
of the system behavior in terms of its asymptotic decay for  0.0025 . .
the T;>T, case.

For a given pair of fixed initial and final temperatures, the \
relaxation function is well fifafter the transientby an ex-
ponential(as discussed previouslwith a characteristic time
 thatdepends on both the initial and the final temperature 90020

In Figs. 6 and 7 we present the results of our simulations
for a chain of lengti. =250 (the results do not change sig- &
nificantly with increasing system size

In Fig. 6 the dependence of the characteristic time on the
final temperature is shown. The curve is well fit by an
Arrhenius law: 7=Cexp(~C,/T;) where C; and C, are
constants.

In Fig 7 we keep fixed the final temperatureT &+ 2, to
study the dependence of the characteristic time on the initia  o.0010 ‘ :
state, we also observe that an Arrhenius law D exp 20 25 S.'f 85 40
(=D, /Ty), with D; and D, constants, holds. Therefore the °
characteristic time depends on both the final temperature and FIG. 7. Semilog plot of the inverse of the characteristic time as
the initial state. a function of 1T, for a fixed 1T;=2. L=250.

0.0015 |
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tem is heated up, there is no such effect: the dynamics i 10° : ,
accelerated as more and more active sites appear in the sy
tem configuration. In order to render more explicit the pre-
vious argument let us perform a mean-field type of calcula-
tion: as we have seen, the total energy of the system i
proportional(throughe) to the number of spinbl,(t) in the
state 1. FoN4(t) we can write a mean-field master equa-
tion:

Ny(t+1)=N(t)+[L =Ny (t)J72(t) = Ny(t) 75(1), (6)

wherelL is the system sizd, — N (t) is the number of spins
in the state 0 at timg, #4(t) is the probability that at timé

a spin in the state 0 flips to 1, ang(t) is the probability of
flipping from 1 to 0. If we now divide Eq(6) for L, we i
obtain 107°

0 5(I)0 10I00
t
o(t+1)=c(t) +[1-o(t)] () —a(t) p2(t),  (7)
FIG. 8. Stretched-exponential decay associated td Bgwhen

wherea(t) is the averaged density of spins at el state e system relaxes with Tj=3 from an initial o(0)=111
at timet. In this way, Eq.(7) is nothing but an effective +€XP(1/2). The fitis given byb=3.7535 and5=0.201[see Eq.
balance equation, which establishes that the probability of”~
being ins=1 at timet+1 is given by the probability of
being ats=1 at timet, plus the probability of being a& qt)=>, wyexp —t/7,), (8)
=0 times the probability of jumping frons=0 to s=1, n
minus the probability to escape fross+ 1. .

We could consider;, and 7, as given by some fixed Wherew, are some weight factor. _ o
values, but in order to keep better track of the original con- N order to shed some light on the microscopic origin of
strained nature of the dynamics we choose them in a slightifh@t slow relaxation process, and clarify whether the

different way: aso(t) can be interpreted as the probability stretched-exponential behavior describing the transient be-
that a fixed spin is in the state=1 at timet, we take 7, havior of the relaxation function comes from a convolution

=0 with probability 1— o(t), that is, the transition probabil- k€ that of Eq.(8) (with then in the sum being the position
ity is O if the preceding spin is in a blocking state, apg N the chain, we have studied the time relaxation of the
—exp(—1/T;) (we have takenp=ry=1) with complemen- energy Qf the spin at every site as a.functlon of_ its po§|t|0n in
tary probability o-(t), according to Eq.(2). Analogously, the chalr_1. In I_:|g. 9 we show the time evolution d{i,t)
7,=0 with probability 1— o (t), 7,=exf(e—1)T,] with  ~Jeq With U(i,t)=e(s(1)), where( ) stands for averages
probability o (t). over different runs. It is observed that the first spin in the
In this way, as the system relaxes to its stationary state(fha'n relaxes fagter than the second one, the sgcond one
the transition probabilities change and modify the rate a#_aster t_han the third, and so on. In fact, the_ energ_@s_of the
which the dynamical variable(t) evolves. irst spinsU (i,t) re.lax e>_<ponent|ally fast to_ its equmbrlgm
The previous simplébut not trivia) equation cannot be ValU&.Ueq=Pege, With a time constant; that increases with
solved analytically, but it is simple to iterate numerically. (€ POsitioni in the chain. After a certain number of spins
We have considered(t=0) given by its equilibrium value
at some temperaturk,, and iterate the equation for different
values of the temperatui®; . The result of such an analysis 01
are shown in Fig. 8. For any set of parameter values the
resulting relaxation curve can be fit by a stretched exponen:
tial with exponent3<<1. We will further study the curious
analytical properties of this simple approach in a future?
work. ]
Therefore, even in this simple approach, in which the spa-
tial structure is almost completely disregarded, we reproduce .01 |
a stretched-exponential type of decay, due to the fact that the
jumping probability decays in time as the number of block-
ing states grows.

t

Uin

0.0001 L L L L L L ' ' '
[ 100 200 300 400 500 600 700 800 900 1000
t

B. Open versus periodic boundary conditions . . )
) ) o FIG. 9. Semilog plot of the decay &f(i,t) —Ugq for the first
A possible way to synthesize a stretched exponential is b¥even spins in an open chain as a function of time, for a system with
the convolution of a number of exponential curves with dif- L =250. The lowermost curve corresponds to the first spin in the
ferent characteristic times,,, i.e., chain, the next one to the second one, and so on.
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that depends on the parameter values, the relaxation of every ) )
single spin is indistinguishable from the relaxation observed P({S}it)zz W({s'}—{shP({s'};t=1), (A1)
performing a simulation with periodic boundary conditions {s'}
and the same parameter values: this is what we cabtitie | horefst=Is =s (1)} and{s't=!s' =s(t— 1) for ever
behavior Therefore the only difference between periodic and { 1={s =5V} {s'}=ts, ( )} y
open boundary conditions is a small effect that does not aff spectively Equation(Al) states how the probability
fect the bulk properties. As apparent stretched-exponenti ({s}:t) of finding the system at a given tintén a configu-
behavior is observed for the relaxation of the bulk Sp'nsrann (s} evolves in time. The transition probabilities
whenT;<T,, we conclude that it is not due to a convolution W({s'}—{s})P({s'};t—1) are given by
of exponential functions with different characteristic times '
associated to the different positions in the chain. L

An alternative possible way to understand the apparent W({s’}ﬂ{s})zl_[ (S| —Si;S{_1), (A2)
stretched-exponential behavior as associated to a convolution =
of exponentials with different characteristic times is by as-

. L, are system configurations at timendt—1

suming that the islands of spins in positiea 1 in the sys- with

tem relax in a different way depending on how many block- exp Bes!)
ing spins are placed in the immediately superior positions in (S| —8,;5_1)=06y s — g 1(— 1)5i,+5i—|
the chain. In this way it is clear that spins blocked by only e e ToeXP( B )
one spin will relax much faster than spins preceded by long (A3)

chains of blocking spins. This mechanism would give rise to
different relaxation times for spins in different relative posi-
tions in the chain, and therefore to a global stretched-
exponential behavior.

and the boundary conditiogy(t) = 1. This is nothing but the
mathematical expression of the transition probabilities de-
scribed in the preceding section.

By direct substitution it is easy to verify that the equilib-

rium distribution
IV. CONCLUSIONS

L
i ; exp — Bes))
We have presented a simple model of slow relaxation. Its P({s};eq = H (A%)

stationary equilibrium distribution is a simple Gibbs distri- ' =1 1+exp — Be)

bution, but its dynamics is strongly constrained. That gives

rise to slow relaxation processes in the case in which thés the stationary solution of E¢A1).

system is cooled from an initial temperatufrg to a smaller From the general equation, E¢A1l), we can derive a
T:. The asymptotic behavior of the relaxation function, afterhierarchy of equations for the-body probability distribu-
a transient, is found to be exponential when heating the sydions [similar to the Bogoliubov-Born-Green-Kirkwood-
tem up, with a relaxation time that depends on both the ini-Yvon (BBGKY) hierarchy in statistical mechanicdn par-
tial and the final temperatures in a nontrivial way. Whenticular, form=1
cooling the system down it is not clear whether the relax- N
ation function reaches an exponential behavior asymptoti-

cally or if it is a stretched exponential even asymptotically. p(si;t E
In any case, for small enough final temperature, and for large s\~
initial temperatures, the system is found to show an ex-
tremely slow relaxation originated by the constrained dy-,
namical rules. In this way we put forward, using a very
simple model, how constrained dynamics can slow down re- 1 1 1

laxation processes in quite a dramatic way. We have also  p(s;;it)= 2>, -+ > 2 - > P({sht)
introduced a very simple one-variable equation that captures $1=0  §-1=054+1=0  5=0

the essence of the slow relaxation and reproduces stretched- (A6)
exponential type of decay.

o(S{ —Si;s{_1)p(s{_1,8 ;t—1),
0

_H\M =

(A5)

here

are the one-body probability functions at time
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are the two-body probability functions at tihe 1. Analyz-

ing this set of equations is a difficult task as can be seen from
Now we present an analytical attempt to understand théhe fact that the one-body probability functions depend on

previously described properties. Our model can be formallythe two-body probabilities distribution¥(s;_1,s;;t—1); the

represented in terms of a Markov chain, defined by the folequations for these depend on three-body probabilities and

lowing equation: SO on.

APPENDIX: ANALYTICAL APPROACH
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The first analytical approadithe only one we complete in Pi(t) = Peqt [Pi(0) —peglexd li(t)/71], (Al
this papey consists of approximating the two-body probabili-

ties by the product of two one-body probability functions, o ) _
namely, with 7;= 7P £XP@/T;) (Which is the free relaxation time

andl;=[p;_,(t")dt’ is an effective time foith spin. Sub-
p(si_1,S ;t—1)~p(si_y;t—=1)p(s ;t—1). (A8) stituting I,=t in Eqg. (A11), we can calculaté,. It is ob-
tained to be given asymptotically dy=p¢g for t>7/pe,

This is a mean-field-like approximation given that high ordergnq therefore EqiA11), for i=2 can be rewritten as
correlation are neglected. Introducing E48) in Eq. (A5),

and after some simple algebra, we get
Pi(t) = Peqt[Pi(0) — PegleXp( —Ped/71).  (A12)

1
i—pit—1)= ———Api_1(t—=)[1—p;(t—1)
3 : TOeXp('B‘b){pl ' e ] By iterating the same procedure we det=p.4 and Eq.
—exp(Be)p;_1(t—1)p;(t—1)}, (A9)  (Al2) asthe solution fop; for anyi>1. The relaxation time
for ith spin7; by Eq.(A12) is
wherep;(t)=p(s;=1;t). In the case of an open chain we set
po(t) =1, which corresponds to the fact that the first spin is 1
unconstrained at any time. o 7= 71/ Pei~ ex% const><—), (A13)
In the continuous time limit, i.e., whery,>1 (which is Ty
the case in the numerical simulationthe previous equation
can be written as

dpi(t) 1 uids. However, this mean-field approximation does not re-

dt mexpSé that more accurate approximations to Hé1) reproduce
—exp(Be)pi_1(Hpi(D}, (A10)  more accurately the behavior of the relaxation function. We

which has a temperature dependence like that of strong lig-

){pi,l(t)[l— pi(t)] produce correctly the characteristic decay times. We expect

plan to present results obtained by truncating the hierarchy at

the general solution to which is higher levels in the futurgl5].
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